EaD Comprehensive Lesson Flans https://www.TeachersAvenue.net https://TrendingGhana.net https://www.mcgregorinriis.com BASIC 8 **WEEKLY LESSON PLAN – WEEK 2** | Strand: | Geometry and Measu | ırement | Sub-Stra | ınd: | Equations and | Inequ | alities | |----------------------------------|--|---|-----------|-------------|---|---------------------------------|---| | Content Standard: | B8.2.3.1 Demonstrate an understanding of linear inequalities of the form $x + a \ge b$ (where a and b are integers) by modelling problems as a linear inequalities and solving the problems concretely, pictorially, and symbolically. | | | | | | | | Indicator (s) | B8.2.3.1.2 Solve simple linear inequalities B8.2.3.1.3 Determine solution sets of simple linear inequalities in given domains Performance Indicator: Learn inequality problems. | | | | ners can solve linear | | | | Week Ending | 14-04-2023 | | | | | | | | Class | B.S.8 | Class Size: | Duration: | | | | | | Subject | Mathematics | | | | | <u> </u> | | | Reference | Mathematics Curriculum, Teachers Resource Pack, Learners Resource Pack, Textbook. | | | | | | | | Teaching / Learning
Resources | Poster, Pictures, Wor | ord Chart. Core Competencies: | | | | | | | DAY/DATE | PHASE 1 :
STARTER | PHASE 2: M | IAIN | | | | PHASE 3:
REFLECTION | | MONDAY
10-04-2023 | Review Learners
knowledge on the
previous lesson. | Discuss with Learners the addition and subtraction rules of linear inequalities. Demonstrate applying addition and subtraction rules to solve inequalities. Assist learners to solve linear inequality questions applying addition and subtraction rules. | | | | | Reflect on the addition and subtraction rules of linear inequalities. | | | | Addition Rule of Linear Inequalities: As per the addition rule of linear inequalities, adding the | | | | Exercise; Solve the inequality; | | | | | same number to each side of the inequality produces an equivalent inequality, that is the inequality symbol does not change. | | | i 4 (x + 2) - 1 > 5
- 7 (4 - x) | | | | | | | | | ii. $8 \le 3 - 5 \times < 12$
iii. $2x - y > 1, x -$ | | | | | | If x > y, then x + a > y + a and if x < y, then x + a < y + a. Subtraction Rule of Linear Inequalities: As per the subtraction rule of linear inequalities, | | | | 2y < -1 | | | | | | | | | | | | <u>L</u> | | subtracting the | same num | ber from ea | ach side of the | | | | | | inequality produces an equivalent inequality, that is the inequality symbol does not change. If $x > y$, then $x - a > y - a$ and if $x < y$, then $x - a < y - a$ Linear Inequalities $ \frac{5x - 3}{4} 4 \frac{3x - 7}{3} $ | | |-----------------------|--|--|---| | TUESDAY
11-04-2023 | Through questions and answers, review Learners knowledge on the previous lesson. | Discuss with Learners multiplication and division rules of linear inequalities. Learners in small groups discuss and solve linear inequalities applying multiplication and division rules. Multiplication Rule of Linear Inequalities: As per the multiplication rule of linear inequalities, multiplication on both sides of an inequality with a positive number always produces an equivalent inequality, that is the inequality symbol does not change. If x > y and a > 0, then x × a > y × a and if x < y and a > 0, then x × a < y × a, Here, × is used as the multiplication symbol. On the other hand, multiplication on both sides of the inequality with a negative number does not produce an equivalent inequality unless we also reverse the direction of the inequality symbol. If x > y and a < 0, then x × a < y × a and if x < y and a < 0, then x × a > y × a. Division Rule of Linear Inequalities: As per the division rule of linear inequalities, division of | Learners practice solving more questions of linear inequalities applying multiplication and division rules. | | | | both sides of an inequality with a positive number | | | | | produces an equivalent inequality, that is the inequality symbol does not change. If $x > y$ and $a > 0$, then $(x/a) > (y/a)$ and if $x < y$ and $a > 0$, then $(x/a) < (y/a)$. On the other hand, the division of both sides of an inequality with a negative number produces an equivalent inequality if the inequality symbol is reversed. If $x > y$ and $a < 0$, then $(x/a) < (y/a)$ and if $x < y$ and $a < 0$, then $(x/a) > (y/a)$ | | |----------------------|---|--|--| | THURSDAY 13-04-2023 | Show pictures of Solution set of linear inequalities to the Learners. | Discuss the meaning of Solution Set with the Learners. Demonstrate finding Solution Sets of linear inequalities. Assist Learners to find Solution Sets of linear inequalities. Solution Set; A solution set is the set of all variables that makes the equation true. The solution set of 2y + 6 = 14 is {4}, because 2(4) + 6 = 14. Find the solution set of the inequality x+4 < 9. X+4 < 9 9 | Through questions and answers, conclude the lesson. Exercise; Calculate the solution set of the following inequalities; i. 3x + 2 > 8 ii. X + 2 > -3 3x + 5 = 11 | Name of Teacher: School: District: