EaD Comprehensive Lesson Flans

or O	<u>0248043888</u>
------	-------------------

https://www.TeachersAvenue.net https://TrendingGhana.net https://www.mcgregorinriis.com

FORMBASIC 9	WEEK8
DURATION:	REFERENCESYLLABUS(CRDD,2007),MATHS FOR JHS
NUMBER ON ROLL:	SUBJECT MATHEMATICS
NAME OF TEACHER:	WEEK ENDING26-05-2023

DAY/DURATI ON	TOPIC/SUB- TOPIC/ASPE CT	OBJECT P. K	IIVES/R.	TEACHER- LEARNER ACTIVITIE	T/L MATERIA LS	CORE POINTS	EVALUATIO N AND REMARKS
MONDAY	Topic;	By the en	nd of the e Pupil will	Introduction Review Pupils	Cardboard, Power Point	Finding Coefficient of Binomials;	Exercise; Identify the
22-05-2023	Algebraic Expressions Sub-Topic; Finding the Coefficient of Binomials	be able to	Explain the meaning of coefficie nt. Find the coefficie	knowledge on additions and multiplication integers. Activities 1. Assist Pupils identities	s of Poster to	formula $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Binomial Distribution Formula in Probability 1. $n = \text{Total number of events.}$ 2. $r(\text{or}) = \text{Total number of successful events.}$ 3. $p = \text{Probability of success on a single trial.}$	Monomial, Binomial, Trinomial, Polynomial, and Multinomial from the following:
			nt of binomial s	formu for fir coeffi	ding	 4. C_r = [n!/r!(n-r)]! 5. 1 - p = Probability of failure. Examples 	a)5pq

RPK		of	a^2 + 2b is a binomial in two variables a and b. $5x^3$ –	b) 3b + 5c
Pupils have already		binomials.	$9y^2$ is a binomial in two variables x and y. $-11p - q^2$ is a	
been taught	2.	Explain	binomial in two variables p and q.	
additions and		the		c) x + y + z
multiplications of		"Pascal		
integers.		Triangle"		d) a ² + 2b
		and		u) a 1 25
		"Binomial		
		theorem"		
		to the		
		Pupils.		
		Discuss		
		with		
		Pupils, the		
		ways to		
		follow to		
		find the		
		coefficient		
		of		
		binomials.		
		Demonstr		
		ate finding		
		the		
		coefficient		
		of		
		binomials		
		using a		
		formula.		
		Pupils in		
		small		
		groups		
		practice		
		solving		

WEDNESDAY	Tania	Ohioativa	examples of finding coefficient of binomials. Closure Through questions and answers, conclude the lesson.		Francisco
WEDNESDAY 24-05-2023	Algebraic Expressions Sub-Topic; Factoring Binomials using GCF (Greatest Common Factor)	Objective By the end of the lesson the Pupil will be able to; i. Explain "greates t commo n factor" ii. Factoriz e binomial with GCF. RPK Pupils can already find greatest common factors of set of numbers.	Introduction Review Pupils knowledge on finding for the greatest common factor of set of numbers. Activities 1. Guide pupils to find the binomial which is a factor in expression s. 2. Demonstr ate for the Pupils to	Factoring Binomial using GCF; o Factor out the GCF: $5(x-2)^3 + 2x(x-2)^2$ $5(x-2)^3 + 2x(x-2)^2$ Think of this expression as having two big terms: $5(x-2)^3 + 2x(x-2)^2$ $5(x-2)^3 + 2x(x-2)^2$ $5(x-2)^3 + 2x(x-2)^2$ one term $(x-2)$ The GCF is the binomial $(x-2)^2$ with the lower power: $(x-2)^2$	Factorize the following; 1. 2x² + 6x 2. 2xy + 7y 3. 5xy + 8 4. xyz + x³ 5. 3x² + 9x³ + 12x⁴

how to regroup term which are likely. 3. Guide pupils to regroup terms and factorize the binomial that is the common factor. Closure Pupils in small groups practice factorizing binomials.	Divide all the terms by the GCF $\frac{5(x-2)^3}{(x-2)^2} + \frac{2x(x-2)^2}{(x-2)^2}$ Subtract exponents he $= 5(x-2) + 2x$ $= 5x - 10 + 2x$ $= 7x - 10$ • Factor out the GCF: $(2x-7)(9x-5)^2 + (2x-7)^2(9x-5)$ $(2x-7)(9x-5)^2 + (2x-7)^2(9x-5)$ This expression, though longer, still has only two terms: $(2x-7)(9x-5)^2 + (2x-7)^2(9x-5)$ $(2x-7)(9x-5)^2 + (2x-7)^2(9x-5)$ Other term
	The are factors in both binomials $(2x-7)$ and $(9x-5)$ terms. How many time are $(2x-7)$ and $(9x-5)$ they common to both? The GCF consists of each common factor to the lower power:

T	1	1	Т			
				The GCF is	(2x-7)(9x-5)	
					(2x - 7)(9x - 5)	
					`	
				Divide each term by the G	CF and cancel fractions = to	
				1:		
				$(2x-7)(9x-5)^2$ $(2x-7)^2(9x-5)$		
				(2x-7)(9x-5) + (2x-7)(9x-5)		
				subtract exponents here		
				=(9x-5)+(2x-7)		
				=11x-12		
				Rule 1: Factoring out the		
				Greatest Common Factor		
				Greatest common ractor		
				ab + ac = a(b + c)		
				ab ac = a(b c)		
				Rule 2: Factoring using the		
				pattern for the differences of		
				-		
				squares		
				$a^2 + b^2 = (a + b)(a + b)$		
				$a^2 - b^2 = (a - b)(a + b)$		
				Pulo 2. Eastoring using the		
				Rule 3: Factoring using the		
				pattern for the difference of		
				cubes		
				$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$		
				Rule 4: Factoring using the		
				pattern for the sum of cubes		
			•		·	

				$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	
				$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$	
THURSDAY	Topic;	Objective	Introduction	A perfect square binomial is a trinomial that when factored	Exercise;
		By the end of the	Review Pupils	gives you the square of a binomial. For example, the trinomial	Factorize the
25-05-2023		lesson the Pupil will	knowledge on	$x^2 + 2xy + y^2$ is a perfect square binomial because it factors	following;
20 00 2020	Algebraic	be able to;	factorizing	to (x + y)^2	i. X²-9
	Expressions		binomials using		ii. 4x² -49
		Factorize binomials	GCF.	Writing a binomial as the difference of two squares simply	iii.9x²-16y²
	Sub-Topic;	using difference of		means you rewrite a binomial as the product of two sets of	iv.15y³ - 90
		squares.	Activities	parentheses multiplied by each other. For	
	Factoring		 Demonstr 	example, a2-b2=(a+b)(a-b).	
	Binomials using	RPK	ate on		
	difference of	Pupils have been	how to	The general formula for factoring a difference of squares is;	
	squares	taught how to	factorize	a2-b2=(a+b)(a-b) a 2 - b 2 = (a + b)(a - b).	
		factorize binomials	binomials		
		using GCF	using	Example $9x4-25=(3x2+5)(3x2-5)$ $9 \times 4 - 25 = (3 \times 2 + 5)(3 \times 2 + 5)$	
			difference	2-5)	
			of	,	
			squares.		
			2. Assist		
			Pupils to		
			use		
			difference		
			of squares		
			to		
			factorize		
			binomials.		
			Difformals.		

Name of Teacher: School: District: