EaD Comprehensive Lesson Flans https://www.TeachersAvenue.net https://TrendingGhana.net https://www.mcgregorinriis.com **BASIC 8** **WEEKLY LESSON PLAN – WEEK 4** | Strand: | Number | | Sub-Strand: | | Number Operations | | | | |-------------------------------------|---|---|---|--|-------------------|---|--------|---| | | B8.1.2.3 Demonstrate understanding and the use the laws of indices in solving problems (including | | | | | | | | | Content
Standard: | real life probles | ms) involving powers | of natural n | umbers | | | | | | Indicator (s) | indices B8.1.2.3.2 App simplify and ev powers of num B8.1.2.3.3 Solv | oly the laws of indices valuate numbers involves. (PEDMAS) we exponential equation of real life problems in real numbers. | s to
ving
ons | Performal indicies. | nce Ind | icator: Learn | ers ca | n apply the law of | | Week Ending | 21-07-2023 | | | | | | | | | Class | B.S.8 | Class Size: | | Duration: | | | | | | Subject | Mathematics | | | | | | 1 | | | Reference | Mathematics C | urriculum, Teachers I | Resource Pa | ck, Learners | Resour | ce Pack, Text | book. | | | Teaching /
Learning
Resources | Charts, Poster, Pictures. | | Cor | Core Competencies: | | Analyze and make distinct judgment about viewpoints expressed in an argument Ability to effectively define goals towards solving a problem | | viewpoints
orgument
effectively define | | DAYS | PHASE 1 :
STARTER | PHASE 2: MAIN | V | | | | | PHASE 3:
REFLECTION | | MONDAY | Using a
Chart,
explain the
law of
indices. | Discuss with examples. Assist Learne involving po Learners bra applying the | ers to use th
wers of num
ainstorm to s | e laws of ind
ober.
simplify and o | lices to | solve problen | ns | Reflect on the applying the laws of indices. Exercise; 1. Determine the | | | | | | | | | | numerical value for
each of the
following (not | ## Laws of Indices or Exponents a, b are real numbers (>0, \neq 1) and m, n are real numbers (i) $$a^m \times a^n = a^{m+n}$$ (ii) $$a^{-m} = \frac{1}{a^m}$$ (iii) $$\frac{a^m}{a^n} = a^{m-n} = \frac{1}{a^{m-n}}$$ (iv) $$(a^m)^n = a^{mn}$$ $$(v) (ab)^n = a^n \cdot b^n$$ (vi) $$a^0 = 1$$ (vii) if $$a^m = a^n$$ then $m = n$. (viii) if $$a^n = b^n$$, $a \neq b$ then $n = 0$. ## 1. Powers, or indices We write the expression $3 \times 3 \times 3 \times 3$ as 3^4 We read this as 'three to the power four'. Similarly $z \times z \times z = z^3$. We read this as 'z to the power three' or 'z cubed'. In the expression b c , the index is c and the number b is called the base. Your calculator will probably have a button to evaluate powers of numbers. It may be marked $x \ y$. The laws of indices To manipulate expressions involving indices we use rules known as the laws of indices. The laws should be used precisely as they are stated - do not be tempted to make up variations of your own! The three most important laws are given here: **First law** $a^m \times a^n = a^{m+n}$ When expressions with the same base are multiplied, the indices are added. **Example** We can write $7.6 \times 7.4 = 76+4 = 710$ You could verify this by evaluating both sides separately. ## Second Law A^m / a^n = A^{m-n} When expressions with the same base are divided, the indices are subtracted. Example We can write 8 5 8 3 = 85–3 = 82 and similarly z 7 z 4 = z 7–4 = z 3 **Third law** (a^m) $n = a^{mn}$ Note that m and n have been multiplied to yield the new index mn. Example; $2 = 64 \times 2 = 68$ and (e x) y = e xy It will also be useful to note the following important results: a 0 = 1, a 1 = a containing exponents): - (i) 6⁴ - (ii) (-5)⁻⁴ - (iii) 9⁰ - (iv) (1414)⁻⁵ - 2. In each case choose an appropriate law to simplify the expression: a) 53 × 5 13 b) 813 ÷ 8 5 c) $\times 6 \times \times 5$ d) (a 3) 4, e) y 7 y 3, f) x 8 x7.2. Use one of the laws to simplify, if possible, a 6×b5. | TUESDAY | Discuss with
Learners on | Learners brainstorn equations. | n to identify 5 e | xamples of exponential | Through questions and answers, | |----------|--|---|---------------------------------|--|---| | | the three
methods of
solving an
exponential | Discuss the basic for Learners. Assist Learners to 6 How to Solve Exponential | explain the types | conclude the lesson. | | | | equation | • 1 Equating Two Exp | onents with the | e Same Base. | | | | | 2 Equating an Expo | | | | | | | 3 Using Logs for Te | rms without the | e Same Base. | | | | | Rule or special case | Formula | Example | | | | | Power of a product | (xy)a=xaya | 36=62=(2·3)2=22·32 | | | | | Power of one | x1=x | 21=2 | | | | | Power of zero | x0=1 | 20=1 | | | | | Power of negative one | x-1=1x | 2-1=12 | | | THURSDAY | Review
Learners
knowledge
on the | natural numbers.
2. Learners brainstori | n to apply word | problem strategies to vers of natural numbers. | Through questions and answers, conclude the lesson. | | | previous
lesso.1. | | EXAMPLE | | | | | 10330.1. | Solve 5x+2=4x | | | | | | | In general we can solve exp
have like bases in the follow | • | ons whose terms do not | | | | | 1. Apply the lo | garithm to both | sides of the equation. | | | | | • | base 1010, us
If none of the | terms in the equation has see the common logarithm. The terms in the equation has see the natural logarithm. | | | | | 2. Use the rule | s of logarithms | to solve for the unknown. | | | | | | EXAMPLE | | | | | | Solve 100=20e2t | | | | | | | 100=20e2t5=e2t Divide by power.ln5=2tTake In of bot inverse functions.t=In52Div | th sides. Use the | fact that ln(x) and ex are | | | | | | EXAMPLE | | | | | | Solve 4e2x+5=124. | | | | | 4e2x+5=124e2x=7 Combine like terms.e2x=74Divide by the coefficient of the base raised to a power.2x=ln(74)Take In of both sides.x=12ln(74)Solve for x. | |---| | EXAMPLE | | Solve e2x-ex=56 e2x-ex=56=0Get one side of the equation equal to zero.(ex+7)(ex-8)=0Factor by the FOIL method.ex+7=0 or ex-8=0If a product is zero, then one factor must be zero.ex=-7 or ex=8Isolate the exponentials.ex=8Reject the equation in which the power equals a negative number.x=In8Solve the equation by taking the natural log of both sides. | Name of Teacher: School: District: