
EaD Comprehensive Lesson Plans

or 0248043888

https://www.TeachersAvenue.net
https://TrendingGhana.net

https://www.mcgregorinriis.com

BASIC 8

WEEKLY LESSON PLAN – WEEK 5

http://www.teachersavenue.net/

Strand: Computational Thinking Sub-Strand: Introduction to programming

Content

Standard:

B8.4.1.1. Show an understanding of the concept of programming.

Indicator (s)

B8.4.1.1.1 Describe the basic concepts in

programming (Constants, Variables,

Expressions, Statements /Instructions, logical

and arithmetic operators, Operator

precedence, etc.)

1. Performance Indicator: Learners can apply the

concept of Programming.

Week Ending 28-07-2023

Class B.S.8 Class Size: Duration:

Subject Computing

Reference Computing Curriculum, BS7 Computing Textbook, Teachers Resource Pack, Learners Resource Pack

Teaching /

Learning

Resources

Chart, Poster, Video. Core Competencies: • Communication and

Collaboration

• Digital Literacy

DAYS PHASE 1 :

STARTER

PHASE 2: MAIN PHASE 3:

REFLECTION

THURSDAY Discuss the

meaning of
Coding with the

Learners.

1. Using a Presentation, explain how coding relates to
Mathematics.

2. Briefly explain the type of Mathematics used in
Coding.

3. Create a table to compare how the same arithmetic
notations are represented in
coding and in mathematics.

4. Discuss with Learners the meanings of the following
terminologies as used in Programming;
i. Constants
ii. Variables
iii. Expressions
iv. Statements or instructions
v. Logical and arithmetic operator.
vi. Operators
vii. Operator precedence.

Math and coding are deeply related, and when teaching your
students how to code, you are -at the same time- delivering
mathematical content, and a way of thinking that they can
use, later on, while calculating something specific in their
math class

Through questioning
strategy, Reflect on
the topic treated.

Exercise;

1.What is Coding?

2. Create a table to
compare how the
arithmetic notation
are represented.

math is used in coding;

Binary mathematics is the heart of the computer and an
essential math field for computer programming. For all
mathematical concepts, the binary number system uses only
two digits, 0 and 1. It simplifies the coding process and is
essential for low-level instructions used in hardware
programming.

Arithmetic Operators

The Java programming language supports various arithmetic

operators for all floating-point and integer numbers. These

operators

are + (addition), - (subtraction), * (multiplication), / (division),

and % (modulo). The following table summarizes the binary

arithmetic operations in the Java programming language.

Binary Arithmetic Operators

Operator Use Description

+ op1 + op2
Adds op1 and op2; also used

to concatenate strings

- op1 - op2 Subtracts op2 from op1

* op1 * op2 Multiplies op1 by op2

/ op1 / op2 Divides op1 by op2

% op1 % op2
Computes the remainder of

dividing op1 by op2

Here's an example program, Arithmetic Demo, that defines
two integers and two double-precision floating-point numbers
and uses the five arithmetic operators to perform different
arithmetic operations. This program also uses + to
concatenate strings. The arithmetic operations are shown in
boldface:

public class Arithmetic Demo {
 public static void main(String[] args) {

 //a few numbers
 int i = 37;
 int j = 42;
 double x = 27.475;
 double y = 7.22;

https://www.iitk.ac.in/esc101/05Aug/tutorial/java/nutsandbolts/ex5/ArithmeticDemo.java

 System.out.println("Variable values...");
 System.out.println(" i = " + i);
 System.out.println(" j = " + j);
 System.out.println(" x = " + x);
 System.out.println(" y = " + y);

 //adding numbers
 System.out.println("Adding...");
 System.out.println(" i + j = " + (i + j));
 System.out.println(" x + y = " + (x + y));

 //subtracting numbers
 System.out.println("Subtracting...");
 System.out.println(" i - j = " + (i - j));
 System.out.println(" x - y = " + (x - y));

 //multiplying numbers
 System.out.println("Multiplying...");
 System.out.println(" i * j = " + (i * j));
 System.out.println(" x * y = " + (x * y));

 //dividing numbers
 System.out.println("Dividing...");
 System.out.println(" i / j = " + (i / j));
 System.out.println(" x / y = " + (x / y));

 //computing the remainder resulting from dividing
numbers
 System.out.println("Computing the remainder...");
 System.out.println(" i % j = " + (i % j));
 System.out.println(" x % y = " + (x % y));

 //mixing types
 System.out.println("Mixing types...");
 System.out.println(" j + y = " + (j + y));
 System.out.println(" i * x = " + (i * x));
 }
}
The output from this program is:

Variable values...
 i = 37
 j = 42
 x = 27.475
 y = 7.22
Adding...
 i + j = 79
 x + y = 34.695
Subtracting...
 i - j = -5
 x - y = 20.255
Multiplying...

 i * j = 1554
 x * y = 198.37
Dividing...
 i / j = 0
 x / y = 3.8054
Computing the remainder...
 i % j = 37
 x % y = 5.815
Mixing types...
 j + y = 49.22
 i * x = 1016.58
Note that when an integer and a floating-point number are

used as operands to a single arithmetic operation, the result is

floating point. The integer is implicitly converted to a floating-

point number before the operation takes place. The following

table summarizes the data type returned by the arithmetic

operators, based on the data type of the operands. The

necessary conversions take place before the operation is

performed.

Result Types of Arithmetic Operations

Data Type

of Result
Data Type of Operands

long
Neither operand is a float or a double (integer

arithmetic); at least one operand is a long.

int
Neither operand is a float or a double (integer

arithmetic); neither operand is a long.

double At least one operand is a double.

float
At least one operand is a float; neither

operand is a double.

In addition to the binary forms of + and -, each of these
operators has unary versions that perform the following
operations, as shown in the next table:

Unary Arithmetic Operators

Operator Use Description

+ +op
Promotes op to int if it's a byte, short,

or char

- -op Arithmetically negates op

Two shortcut arithmetic operators are ++, which increments
its operand by 1, and --, which decrements its operand by 1.
Either ++ or -- can appear before (prefix) or after (postfix) its
operand. The prefix version, ++op/--op, evaluates to the value
of the operand after the increment/decrement operation. The
postfix version, op++/op--, evaluates to the value of the
operand before the increment/decrement operation.

The following program, called SortDemo , uses ++ twice
and -- once.

public class SortDemo {
 public static void main(String[] args) {
 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076,
 2000, 8, 622, 127 };

 for (int i = arrayOfInts.length; --i >= 0;) {
 for (int j = 0; j < i; j++) {
 if (arrayOfInts[j] > arrayOfInts[j+1]) {
 int temp = arrayOfInts[j];
 arrayOfInts[j] = arrayOfInts[j+1];
 arrayOfInts[j+1] = temp;
 }
 }
 }

 for (int i = 0; i < arrayOfInts.length; i++) {
 System.out.print(arrayOfInts[i] + " ");
 }
 System.out.println();
 }
}
This program puts ten integer values into an array — a fixed-

length structure that can hold multiple values of the same

type — then sorts them. The boldface line of code declares an

array referred to by arrayOfInts, creates the array, and puts

ten integer values into it. The program

uses arrayOfInts.length to get the number of elements in the

array. Individual elements are accessed with this

notation: arrayOfInts[index], where index is an integer

indicating the position of the element within the array. Note

that indices begin at 0. You’ll get more details and examples

for arrays in the section Arrays .

The output from this program is a list of numbers sorted from
lowest to highest:

https://www.iitk.ac.in/esc101/05Aug/tutorial/java/nutsandbolts/ex5/SortDemo.java
https://www.iitk.ac.in/esc101/05Aug/tutorial/java/data/arrays.html
https://www.iitk.ac.in/esc101/05Aug/tutorial/java/nutsandbolts/ex5/SortDemo.java
https://www.iitk.ac.in/esc101/05Aug/tutorial/java/data/arrays.html

3 8 12 32 87 127 589 622 1076 2000
Let's look at how the SortDemo program uses -- to help

control the outer of its two nested sorting loops. Here's the

statement that controls the outer loop:

for (int i = arrayOfInts.length; --i >= 0;) {
 ...
}

FRIDAY Assist Learners

to identify the

basic operations

of Programming.

1. Learners brainstorm to describe 5 basic operations that
Programming Languages can perform.

2. Discuss with Learners about the principles of
Programming Languages.

3. Show Learners a YouTube video on operators and
expressions.

4. Assist Learners to explain in detail the function of each
type of operator.

Example of Arithmetic Operators in C++

Here is a code in C++ which illustrates all the basic arithmetic
operators:

#include <iostream>

using namespace std;

int main()

{

cout<<"Welcome to DataFlair tutorials!\n\n"<<endl<<endl;

int a = 10, b = 7;

cout<<"The Addition of "<< a << " and " << b << " are: " << a +

b <<endl;

cout<<"The Subtraction of "<< a << " and " << b << " are: " << a

- b <<endl;

cout<<"The Multiplication of "<< a << " and " << b << " are: "

<< a * b <<endl;

cout<<"The Division of "<< a << " and " << b << " are: " << a / b

<<endl;

cout<<"The Modulus operation between "<< a << " and " << b

<< " is: " << a % b <<endl;

cout<<"The Incremented value ++a is: "<< ++a <<endl;

cout<<"The Decremented value --a is: "<< --a <<endl;

return 0;

}

Example of Relational Operators in C-

#include <stdio.h>

Through questions

and answers,

conclude the lesson.

Exercise;

1. State 5 basic

operations

that

Programming

Languages

can perform.

2. Write an

example of

arithmetic

operators in

C++.

int main()

{

int a=10, b=10, c=20;

printf("Welcome to DataFlair tutorials!\n\n");

printf("For %d == %d : The output is: %d \n", a, b, a == b); //

condition is true

printf("For %d == %d : The output is: %d \n", a, c, a == c); //

condition is false

printf("For %d != %d : The output is: %d \n", a, c, a != c); //

condition is true

printf("For %d != %d : The output is: %d \n", a, b, a != b); //

condition is false

printf("For %d > %d : The output is: %d \n", a, b, a > b); //

condition is false

printf("For %d > %d : The output is: %d \n", a, c, a > c); //

condition is false

printf("For %d < %d : The output is: %d \n", a, b, a < b); //

condition is false

printf("For %d < %d : The output is: %d \n", a, c, a < c); //

condition is true

printf("For %d >= %d : The output is: %d \n", a, b, a >= b); //

condition is true

printf("For %d >= %d : The output is: %d \n", a, c, a >= c); //

condition is false

printf("For %d <= %d : The output is: %d \n", a, b, a <= b); //

condition is true

printf("For %d <= %d : The output is: %d \n", a, c, a <= c); //

condition is true

return 0;

}

Example of Logical Operators in C Programming-

#include <stdio.h>

int main()

{

int a = 10, b = 10, c = 20, answer;

printf("Welcome to Data Flair tutorials!\n\n");

answer = (a == b) && (c > b);

printf("For (%d == %d) && (%d != %d), the output is: %d

\n",a,b,b,c,answer); //condition is true

answer = (a == b) && (c < b) && (c>0);

Name of Teacher: School: District:

printf("For (%d == %d) && (%d <= %d), the output is: %d

\n",a,b,b,c,answer); //condition is false

answer = (a == b) || (b > c);

printf("For (%d == %d) || (%d < %d), the output is: %d

\n",a,b,c,b,answer); / /condition is true

answer = (a != b) || (a <= b) || (a>c);

printf("For (%d != %d) || (%d < %d), the output is: %d

\n",a,b,c,b,answer); //condition is true

answer = !(a == b);

printf("For !(%d == %d), the output is: %d \n",a,b,answer);

//condition is false

answer = !(a != b);

printf("For !(%d == %d), the output is: %d \n",a,b,answer);

//condition is true

return 0;

}

