EaD Comprehensive Lesson Flans https://www.TeachersAvenue.net https://TrendingGhana.net https://www.mcgregorinriis.com BASIC 7 ## **WEEKLY LESSON PLAN – WEEK 5** | Strand: | Geometry and
Measurement | Sub- | Strand: | | Measurement | | | |-------------------------------------|--|--|----------------------|------|---|--|--| | | B.7.3.2.2 Derive the formula for determining the area of a triangle and use it to solve problems | | | | | | | | Content
Standard: | | | | | | | | | Indicator (s) | B7.3.2.2.1 Use the r
triangle and a rectar
to deduce the formu
area of a triangle. | igle (or paralle | e (or parallelogram) | | nance Indicator: | | | | | B7.3.2.2.2 Determ triangle | ine the area of | fa | | | | | | Week
Ending | 28-07-2023 | | | | | | | | Class | B.S.7 Class | s Size: | | | Duration: | | | | Subject | Mathematics | | | | | | | | Reference | Mathematics Curriculum, Teachers Resource Pack, Learners Resource Pack, Textbook. | | | | | | | | Teaching /
Learning
Resources | Chart, Meter Rule
divider, Poster, Pid | • | | Core | Competencies: | Analyze and make distinct judgment about viewpoints expressed in an argument Ability to effectively define goals towards solving a problem | | | DAYS | PHASE 1 :
STARTER | PHASE 2: | MAIN | | | PHASE 3:
REFLECTION | | | MONDAY | Review Learners
knowledge on
the previous
lesson. | Assist Learners to draw in the dot square grid a triangle whose area is 3 square units. Discuss the formula for calculating area with the Learners. Learners practice calculating the area of the triangle in the square grid. | | | Learners in small groups to discuss and calculate the area of triangles in square. Exercise; Calculate the area of triangle using the square grid, if each square has side length of 1 cm | | | | TUESDAY | Discuss with Learners the meaning of Parallelogram. | Learners brainstorm to draw triangles in a square grid. Assist Learners to determine the number of unit squares enclosed by the triangles Learners practice calculating the perpendicular height of each triangle. Learners to describe how the perpendicular heights of each triangle help you in calculating its area. | Through questions and answers, conclude the lesson. Exercise; 1. a triangle has an area of 16in² and a base of 8in. What is the height of this triangle? 2. a triangle has side lengths of 3 inches, 4 inches, and a base of 5 inches. What is the height of this triangle? 3. What is the area of a triangle whose width is 4cm and whose perpendicular height is 15cm? | |---|---|---|--| | THURSDAY Assist Learners to identify the formula for calculating the area of a triangle. | | Demonstrate calculating for the area of triangles whilst Learners observe. Learners brainstorm to identify the types of a triangle. Assist Learners to find the area of the various types of triangles. Area of a right triangle The area of a triangle = (½ × Base × Height) square units. | Learners in small groups to calculate examples of finding the area of triangles. Exercise; 1. Calculate the area of an equilateral triangle whose side | Find the area of the right-angled triangle whose base is 9 m and height is 12m. #### **Solution** $A = \frac{1}{2} \times base \times height$ $$= \frac{1}{2} \times 12 \times 9$$ $$= 54 \text{ cm}^2$$ #### Example 2 The base and height of a right triangle are 70 cm and 8 m, respectively. What is the area of the triangle? ### **Solution** $A = \frac{1}{2} \times base \times height$ Here, we have 70 cm and 8 m. You can choose to work with cm or m. Let's work in meters by changing 70cm to meters. Divide 70cm by 100. $$70/100 = 0.7$$ m. $$\Rightarrow$$ A = (½ × 0.7 × 8) m² $$\Rightarrow$$ A = (½ x 5.6) m² $$\Rightarrow$$ A = 2.8m² Area of an equilateral triangle An equilateral triangle is a triangle in which the three sides are equal and the three interior angles equal. The area of an equilateral triangle is: - Find the area of an equilateral triangle whose perimeter is 84 mm. - 3. Find the area of the right-angled triangle whose base is 9 m and height is 12m. | Name of Teacher: | School: District: | | |------------------|--|--| | | | | | | = 5√455 mm ² | | | | $= \sqrt{(25 \times 13 \times 7 \times 5)}$ | | | | $= \sqrt{25 \times (25 - 12) \times (25 - 18) \times (25 - 20)}$ | | | | $\Rightarrow Area = V \{p (p-a) (p-b) (p-c)\}$ | | | | ⇒ p = 25 | | | | ⇒ p = 50/2 | | | | \Rightarrow p = (12 + 18 + 20) / 2 | | | | Substitute the values of a, b and c. | | | | $\Rightarrow p = (a + b + c) / 2$ | | | | Solution | | | | 18mm, 20mm, and 12mm. | | | | Calculate the area of a triangle whose side lengths are | | | | Example 7 | | | | $\Rightarrow p = (a + b + c) / 2$ | | | | ichgaris. | | | | lengths. | | | | where 'p' is the semi-perimeter and a, b, c are the side | | | | $\Rightarrow Area = V \{p (p-a) (p-b) (p-c)\}$ | | | | Heron's formula is given by; | | | | calculated using Heron's formula. | | | | and 3 different angles. The area of a scalene triangle can be | | | | A scalene triangle is a triangle with 3 different side lengths | | | | | | Name of Teacher: School: District: