
EaD Comprehensive Lesson Plans

 or 0248043888

https://www.TeachersAvenue.net
https://TrendingGhana.net

https://www.mcgregorinriis.com

BASIC 9

WEEKLY LESSON PLAN – WEEK 8

https://www.teachersavenue.net/
https://www.teachersavenue.net/
https://www.teachersavenue.net/

Strand: Productive Software Sub-Strand: Introduction to Electronic Spreadsheet

Content Standard:

B9.2.4.1. Demonstrate How to Use Spreadsheet (Advanced Operations)

Indicator (s)

B9.2.4.1.2. Demonstrate how to use styles,

themes, templates and macros

Performance Indicator; Learners can differentiate

between themes, templates and macros.

Week Ending 01-03-2024

Class B.S.9 Class Size: Duration:

Subject Computing

Reference Computing Curriculum, Teachers Resource Pack, Learners Resource Pack

Teaching / Learning

Resources

Personal Computer, Microsoft Excel

Application, Poster, Charts, YouTube

Videos

Core

Competencies:

 Operational skills

 Manipulative skills

DAY/DATE PHASE 1 :

STARTER

PHASE 2: MAIN PHASE 3:

REFLECTION

TUESDAY

Assist Learners to

differentiate
between

templates, themes
and macros as

used in
spreadsheet.

1. Demonstrate on creating new spreadsheet
documents from predefined templates in MS
Excel.

2. Assist Learners to practice creating new
spreadsheet documents from predefined
templates.

3. Learners in small groups to discuss and practice
the use of styles and themes on sample
worksheets.

Template

Templates are files that help you design interesting,
compelling, and professional-looking documents. They
contain content and design elements that you can use as
a starting point when creating a document. All the
formatting is complete; you add what you want to them.
Examples are resumes, invitations, and newsletters.

Through questions
and answers,
conclude the
lesson.

Exercise;

Differentiate
between
templates,
themes and
macros.

https://create.microsoft.com/templates/resumes
https://create.microsoft.com/templates/invitations
https://create.microsoft.com/templates/newsletters

Theme

To give your document a designer-quality look — a look
with coordinating theme colors and theme fonts — you'll
want to apply a theme. You can use and share themes
among the Office for Mac applications that support
themes, such as Word, Excel, and PowerPoint. For
example, you can create or customize a theme in
PowerPoint, and then apply it to a Word document or
Excel sheet. That way, all of your related business
documents have a similar look and feel.

Word styles

Themes provide a quick way to change the overall color
and fonts. If you want to change text formatting quickly,
Word styles are the most effective tools. After you apply
a style to different sections of text in your document,
you can change the formatting of this text simply by
changing the style. Word includes many types of styles,
some of which can be used to create reference tables in
Word. For example, the Heading style, which is used to

create a Table of Contents?

FRIDAY

Learners
brainstorm to
explain the term
“table
visualization” in
Excel.

1. Demonstrate on formatting a dataset by applying
styles and themes.

2. Assist learners to practice formatting a dataset
by applying styles and themes.

3. Discuss with the Learners on how to format
displays and values in Excel.

4. Assist Learners to practice concatenating data
frame outputs in Excel.

Formatting the Display

Formatting Values

The Styler distinguishes the display value from
the actual value, in both data values and index or
columns headers. To control the display value, the text is
printed in each cell as a string, and we can use
the .format() and .format_index() methods to manipulate
this according to a format spec string or a callable that

Learners

brainstorm to

practice how

to hide values

in

spreadsheet.

Exercise

State the steps to

follow to format

values in Excel.

https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.html
https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.format.html
https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.format_index.html
https://docs.python.org/3/library/string.html#format-specification-mini-language

takes a single value and returns a string. It is possible to
define this for the whole table, or index, or for individual
columns, or MultiIndex levels. We can also overwrite
index names.

Additionally, the format function has
a precision argument to specifically help format floats, as
well as decimal and thousands separators to support
other locales, an na_rep argument to display missing
data, and an escape and hyperlinks arguments to help
displaying safe-HTML or safe-LaTeX. The default
formatter is configured to adopt pandas’ global options
such as styler.format.precision option, controllable
using with pd.option_context('format.precision', 2):

[2]:
import pandas as pd
import numpy as np
import matplotlib as mpl

df = pd.DataFrame({
 "strings": ["Adam", "Mike"],
 "ints": [1, 3],
 "floats": [1.123, 1000.23]
})
df.style \
 .format(precision=3, thousands=".", decimal=",") \
 .format_index(str.upper, axis=1) \
 .relabel_index(["row 1", "row 2"], axis=0)
[2]:

 STRINGS INTS FLOATS

row 1 Adam 1 1,123

row 2 Mike 3 1.000,230

Using Styler to manipulate the display is a useful feature
because maintaining the indexing and data values for
other purposes gives greater control. You do not have to
overwrite your DataFrame to display it how you like.
Here is a more comprehensive example of using the
formatting functions whilst still relying on the underlying
data for indexing and calculations.

[3]:
weather_df = pd.DataFrame(np.random.rand(10,2)*5,
 index=pd.date_range(start="2021-01-01",
periods=10),
 columns=["Tokyo", "Beijing"])

def rain_condition(v):
 if v < 1.75:

 return "Dry"
 elif v < 2.75:
 return "Rain"
 return "Heavy Rain"

def make_pretty(styler):
 styler.set_caption("Weather Conditions")
 styler.format(rain_condition)
 styler.format_index(lambda v: v.strftime("%A"))
 styler.background_gradient(axis=None, vmin=1,
vmax=5, cmap="YlGnBu")
 return styler

weather_df
[3]:

Tokyo Beijing

2021-01-01 4.985092 3.473298

2021-01-02 3.264144 0.033467

2021-01-03 4.678288 4.567539

2021-01-04 2.983053 4.141140

2021-01-05 2.145126 3.784963

2021-01-06 4.197181 1.994896

2021-01-07 2.218433 1.584807

2021-01-08 3.002908 3.734839

2021-01-09 2.682287 2.879510

2021-01-10 3.343583 2.592540

[4]:
weather_df.loc["2021-01-04":"2021-01-
08"].style.pipe(make_pretty)
[4]:

Weather Conditions

 Tokyo Beijing

Monday Heavy Rain Heavy Rain

Tuesday Rain Heavy Rain

Wednesday Heavy Rain Rain

Thursday Rain Dry

Friday Heavy Rain Heavy Rain

Hiding Data

The index and column headers can be completely
hidden, as well subselecting rows or columns that one
wishes to exclude. Both these options are performed
using the same methods.

The index can be hidden from rendering by
calling .hide() without any arguments, which might be
useful if your index is integer based. Similarly column
headers can be hidden by
calling .hide(axis=”columns”) without any further
arguments.

Specific rows or columns can be hidden from rendering
by calling the same .hide() method and passing in a
row/column label, a list-like or a slice of row/column
labels to for the subset argument.

Hiding does not change the integer arrangement of CSS
classes, e.g. hiding the first two columns of a DataFrame
means the column class indexing will still start at col2,
since col0 and col1 are simply ignored.

[5]:
df = pd.DataFrame(np.random.randn(5, 5))
df.style \
 .hide(subset=[0, 2, 4], axis=0) \
 .hide(subset=[0, 2, 4], axis=1)
[5]:

 1 3

1 0.679529 -0.397631

3 -1.765405 -1.166462

To invert the function to a show functionality it is best
practice to compose a list of hidden items.

[6]:
show = [0, 2, 4]
df.style \
 .hide([row for row in df.index if row not in show],
axis=0) \
 .hide([col for col in df.columns if col not in show],
axis=1)
[6]:

 0 2 4

https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.hide.html
https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.hide.html
https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.hide.html

Name of Teacher: School: District:

0 0.387468 0.348897 2.144013

2
-

0.631555
-

0.621477
2.273923

4 1.203479
-

0.420140
0.946772

Concatenating DataFrame Outputs

Two or more Stylers can be concatenated together
provided they share the same columns. This is very
useful for showing summary statistics for a DataFrame,
and is often used in combination with DataFrame.agg.

Since the objects concatenated are Stylers they can
independently be styled as will be shown below and their
concatenation preserves those styles.

[7]:
summary_styler = df.agg(["sum", "mean"]).style \
 .format(precision=3) \
 .relabel_index(["Sum", "Average"])
df.style.format(precision=1).concat(summary_styler)
[7]:

 0 1 2 3 4

0 0.4 0.3 0.3 -0.1 2.1

1 0.0 0.7 -2.7 -0.4 0.9

2 -0.6 -1.4 -0.6 0.7 2.3

3 -0.9 -1.8 -0.9 -1.2 0.4

4 1.2 -0.4 -0.4 1.1 0.9

Sum 0.063 -2.554 -4.271 0.121 6.726

Average 0.013 -0.511 -0.854 0.024 1.345

