EaD Comprehensive Lesson Plans | | or | 0248043888 | | | | | |--------------------------------|--------------------------|-------------|-------------|--|--|--| | https://www.TeachersAvenue.net | | | | | | | | Strand: | Geometry and Measurement | Sub-Strand: | Measurement | | | | https://TrendingGhana.net BASIC 9 **WEEKLY LESSON PLAN – WEEK 13** | | B9.3.2.2 Solve proble | ems involving bearings a | nd addition/subtra | ction of vectors | | |----------------------------------|--|---|--|--|---| | Content Standard: | | | | | | | Indicator (s) | B9.3.2.2.1 Show an understanding of parallel vectors and perpendicular vectors. Performance Indicator: Learne scalar product and vector product | | | | | | 2(8) | B9.3.2.2.2 Apply the parallelogram laws o vectors. | _ | | | | | Week Ending | 06-12-2024 | | | | | | Class | B.S.9 | Class Size: | Du | ration: | | | Subject | Mathematics | | | , | | | Reference | Mathematics Curricu | llum, Teachers Resource | Pack, Learners Re | source Pack, Tex | tbook. | | Teaching / Learning
Resources | Poster, Cardboard, | Competencies: • Critical | | | unication
l thinking
vity and Innovation | | DAY/DATE | PHASE 1 :
STARTER | PHASE 2: MAIN | | | PHASE 3:
REFLECTION | | MONDAY | Assist Learners to identify parallel and perpendicular vectors, | Discuss with the scalar product of Learner in small product of Vector product of Assist Learners to lines. | groups to discuss a
f two vectors. | and calculate the | Learners brainstorm to find vector components given that two vectors are parallel or perpendicular. | | | | Scalar | Product of Vectors | 5 | Exercises | | | | The scalar product and ways of multiplying ver application in physics a of two vectors can be of the component of one other and multiplying i vector. This can be exp $\vec{A} \cdot \vec{B} = AB \cos \theta$ $\vec{Calculation}$ If the vectors are expressed in also be expressed in | tors which see the nd astronomy. The onstructed by taking vector in the direct times the magnituressed in the form A denotes vector A denotes the magnitude of the vector denotes the magnitude of the vector desired in terms of und z directions, the | e most
e scalar product
ing
ition of the
ude of the other
: | 1. Use the formula a × b = (a2b3 - a3b2)i + (a3b1 - a1b3)j + (a1b2 - a2b1)k to find the vector product a × b in each of the following cases. (a) a = 2i + 3j, b = -2i + 9j. (b) a = 4i - 2j, b = 5i - 7j. Comment upon your solutions. 2. Use the formula in Q1 to find the vector product a × b in each of the | | | | $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z \text{where} \vec{B} = B_x \vec{i} + A_y \vec{j} + A_z \vec{k}$ The scalar product is also called the "inner product" or the "dot product" in some mathematics texts. The Scalar Product of Two Vectors Consider two vectors, A and B.The angle between the two vectors is θ .This is shown in the diagram below. The scalar product of A and B is equal to the magnitude of A multiplied by the magnitude of B multiplied by the cosine of the angle between them, θ , which we can write asABAB·= (θ).cos Writing two straight lines on either side of a vector symbol, for example, A,means taking the magnitude of the vector. We can write this definition in a simpler way if we just say that A is the magnitude of A and B is the magnitude of B:AB·= $AB(\theta)$ | following cases. (a) a = 5i + 3j + 4k, b = 2i - 8j + 9k. (b) a = i + j - 12k, b = 2i + j + k. 3. Use determinants to find the vector product p × q in each of the following cases. (a) p = i + 4j + 9k, q = 2i - k. (b) p = 3i + j + k, q = i - 2j - 3k. 4. For the vectors p = i + j + k, q = -i - j - k show that, in this special case, p × q = q × p. 5. For the vectors a = i + 2j + 3k, b = 2i + 3j + k, c = 7i + 2j + k, show that a × (b + c) = (a × b) + (a × c) | |-----------|--|--|--| | | | $\frac{\theta}{b}$ a. b = a b cos θ | | | WEDNESDAY | Assist Learners to identify the triangle law of vector addition. | Demonstrate on how to the triangle law to add two or more vectors. Learners brainstorm to solve more examples of applying the triangle law of vector additions. Discuss the properties of vector additions with the Learners. | Through questions and answers, conclude the lesson. | | | | Triangle Law of Vector Addition A vector \(\vec{AB} \), in simple words, means the displacement from point A to point B. Now, imagine a scenario where a boy moves from point A to B and then from point B to C. What is the net displacement made by | Exercise; 1. What is the Commutat ive property | This $\underline{\text{displacement}}$ is given by the $\underline{\text{vector}} \setminus (\text{vec}\{AC\} \setminus)$, where This is the Triangle law of Vector Addition. ### **Properties of Vector Addition** ## Property 1 – Commutative Property For any two vectors \(\vec{a}\) and \(\vec{b}\), $$(\sqrt{a}) + (\sqrt{b}) = (\sqrt{b}) + (\sqrt{a})$$ **Proof**: To prove this property, let's consider a parallelogram ABCD as shown below # of vector addition? - 2. What is the Associativ e property of Vector addition? - 3. Two vectors A and B have magnitud es of 4 units and 9 units and make an angle of 30° with each other. Find the magnitud e and direction of the resultant sum vector using the triangle law of vector addition formula. - 4. Two vectors with magnitud es 2 units and $\sqrt{2}$ units act on a body. The resultant vector has magnitud e of √10 units. Find the angle between the two | \(\vec{AC}\) = \(\vec{a}\) + \(\vec{b}\) | given | |---|----------| | | vectors. | | In a parallelogram, the opposite sides are always equal. Hence, we have | | | $\ \(\ensuremath{\mbox{Vec}\{AD\} \) = \(\ensuremath{\mbox{\m}\mbox{\mbox{\m}\mbox{\mbox{\mbox{\mbox{\mbox{\m}\mbox{\mbox{\m\m\m\m\m\\\\m\m\\\\\m\\\\\\\\\\\\\\\$ | | | \(\vec{DC}\) = \(\vec{AB}\) = \(\vec{a}\) | | | Next, considering the triangle ADC and using the triangle | | | law of vector addition, we have | | | \(\vec{AC}\) = \(\vec{AD}\) + \(\vec{DC}\) = \(\vec{b}\) | | | + \(\vec{a} \) | | | Hence, \(\vec{a} \) + \(\vec{b} \) = \(\vec{b} \) + \(\vec{a} | | | V | | | | | | Property 2 – Associative Property | | | For any three vectors \(\vec{a} \), \(\vec{b} \), and \(| | | \vec{c} \), | | | | | | (\(\vec{a}\) + \(\vec{b}\)) + \(\vec{c}\) = \(\vec{a}\) + (\(\vec{b}\)) | | | (34,3,0,4,1,3,6,3,0, | | | Proof: To prove this property, let's look at two figures as | | | given below | | | | | | $Q \xrightarrow{\overrightarrow{b}} Fig. 7$ | | | | | | Z X D C C C C C C C C C C C C C C C C C C | | | (i) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ S $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ S (ii) | | | | | | Let, the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) | | be represented by \(\vec{PQ} \), \(\vec{QR} \), and \($(\sqrt{a}) + (\sqrt{b}) = (\sqrt{PQ}) + (\sqrt{QR})$ Also, $\ (\ensuremath{\mbox{vec}} \) + \ (\ensuremath{\mbox{vec}} \) = \ (\ensuremath{\mbox{vec}} \ QR \) + \ (\ensuremath{\mbox{vec}} \ RS \)$ And, $(\sqrt{a}) + ((\sqrt{b}) + (\sqrt{c})) = (\sqrt{PQ}$ Hence, $(\ \vec{a} \) + (\vec{b} \)) + (\vec{c} \) = ($ $\ensuremath{\mbox{Vec\{PR\} \)} + \ (\ensuremath{\mbox{Vec\{RS\} \)} = \ (\ensuremath{\mbox{Vec\{PS\} \)}}$ \vec{RS} \), respectively. Now, = \(\vec{PR} \) \) = \(\vec{QS} \) | | | \) + \(\vec{QS} \) = \(\vec{PS} \) | | |---|--|---|--| | | | Therefore, we conclude that $ (\ \ \ \ \ \ \ \ \ \ \ \ \ $ | | | | | Note: The associative property of vector addition enables us to write the sum of three vectors \(\vec{a} \), \(\vec{b} \), and \(\vec{c} \) without using any brackets: \(\vec{a} \) + \(\vec{b} \) + \(\vec{c} \) | | | | | Also, for any vector \(\vec{a} \), we have \(\vec{a} \) + \(\vec{0} \) = \(\vec{0} \) + \(\vec{a} \) = \(\vec{a} \) | | | | | The zero vector is also called the additive identity for vector addition | | | | | | | | L | Discuss with the Learners about the parallelogram law of vector additions. | Demonstrate on how to apply the parallelogram law of vector additions. Assist Learners to add the vertices of parallelograms by applying the parallelogram law of vector additions. Learners in small groups to discuss and solve more examples of adding vertices of parallelograms. Parallelogram Law of Vector Addition Now, let's consider a slightly complex scenario. Imagine a boat in a river going from one bank to the other in a direction perpendicular to the flow of the river. This boat has two velocity vectors acting on it: The velocity imparted to the boat by its engine The velocity of the flow of the river. When these two velocities simultaneously influence the boat, it starts moving with a different velocity. Let's look at how we can calculate the resultant velocity of the boat. To find the answer, let's take two vectors \(\vec{a}\) and \(\vec{b}\) shown below, as the two adjacent sides of a | Summarize the lesson. Exercise; 1. Consider two vectors A and B. Let A have a magnitude of 4 units and point in the north direction (upwards), and let B have a magnitude of 3 units and point in the east direction (rightwards). To find the resultant vector using the parallelogram law, we construct a parallelogram with A and B as its adjacent sides. The diagonal of the parallelogram | parallelogram in their magnitude and direction. Note: Using the Triangle law, we can conclude the following from Fig. 5 \(\vec{OA}\) + \(\vec{AC}\) = \(\vec{OC}\) Or, \(\vec{OA}\) + \(\vec{OB}\) = \(\vec{OC}\) ... since \(\vec{AC}\) = \(\vec{OB}\) Hence, we can conclude that the triangle and parallelogram laws of vector addition are equivalent to each other. #### Statement of Parallelogram Law If two vectors acting simultaneously at a point can be represented both in magnitude and direction by the adjacent sides of a parallelogram drawn from a point, then the resultant vector is represented both in magnitude and direction by the diagonal of the parallelogram passing through that point. Derivation of the law Note: All the letters in bold represent vectors and normal letters represent magnitude only. Let **P** and **Q** be two vectors acting simultaneously at a point and represented both in magnitude and direction by two adjacent sides OA and OD of a parallelogram OABD as shown in figure. represents the resultant vector. By measuring the magnitude and direction of the diagonal, we determine the resultant vector. 2. Let's say we have vector C with a magnitude of 5 units pointing in the northeast direction (45 degrees between north and east). Similarly, we have vector D with a magnitude of 2 units pointing in the southwest direction (45 degrees between south and west). By constructing a parallelogram with C and D as its adjacent sides, the diagonal of the parallelogram represents the resultant vector. Measuring the magnitude and direction of the diagonal gives us the resultant vector. Let θ be the angle between **P** and **Q** and **R** be the resultant vector. Then, according to parallelogram law of vector addition, diagonal OB represents the resultant of **P** and **Q**. So, we have $$R = P + Q$$ Now, expand A to C and draw BC perpendicular to OC. From triangle OCB, $$OB^{2} = OC^{2} + BC^{2}$$ $or, OB^{2} = (OA + AC)^{2} + BC^{2}$(i) In triangle ABC, $$\cos \theta = \frac{AC}{AB}$$ $$or, AC = AB \cos \theta$$ $$or, AC = OD \cos \theta = Q \cos \theta \quad [\because AB = OD = Q]$$ Also, $$\begin{split} \cos\theta &= \frac{BC}{AB} \\ or, BC &= AB\sin\theta \\ or, BC &= OD\sin\theta = Q\sin\theta \quad [\because AB = OD = Q] \end{split}$$ ### Magnitude of resultant: Substituting value of AC and BC in (i), we get $$\begin{split} R^2 &= (P + Q\cos\theta)^2 + (Q\sin\theta)^2 \\ or, R^2 &= P^2 + 2PQ\cos\theta + Q^2\cos^2\theta + Q^2\sin^2\theta \\ or, R^2 &= P^2 + 2PQ\cos\theta + Q^2 \\ \therefore R &= \sqrt{P^2 + 2PQ\cos\theta + Q^2} \end{split}$$ which is the magnitude of resultant. **Direction of resultant:** Let \emptyset be the angle made by resultant **R** with **P**. Then, From triangle OBC, $$\tan \phi = \frac{BC}{OC} = \frac{BC}{OA + AC}$$ $$or, \tan \phi = \frac{Q \sin \theta}{P + Q \cos \theta}$$ $$\therefore \phi = \tan^{-1}(\frac{Q \sin \theta}{P + Q \cos \theta})$$ which is the direction of resultant. #### **Numerical Problem** Two forces of magnitude 6N and 10N are inclined at an angle of 60° with each other. Calculate the magnitude of resultant and the angle made by resultant with 6N force. #### **Solution:** Let **P** and **Q** be two forces wih magnitude 6N and 10N respectively and θ be angle between them. Let **R** be the resultant force. So, P = 6N, Q = 10N and θ = 60° We have, $$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$ or, $R = \sqrt{6^2 + 10^2 + 2.6.10\cos60^\circ}$ $$\therefore R = \sqrt{196} = 14N$$ which is the required magnitude Let ϕ be the angle between **P** and **R**. Then, $$\tan \phi = \frac{Q \sin \theta}{P + Q \cos \theta}$$ $$or, \tan \phi = \frac{10 \sin 60^{\circ}}{6 + 10 \cos 60^{\circ}}$$ $$or, \tan \phi = \frac{5\sqrt{3}}{11}$$ $$\therefore \phi = \tan^{-1}(\frac{5\sqrt{3}}{11})$$ which is the required angle. Name of Teacher: School: District: